HARRICK PLASMA

Reversible gating of smart plasmonic molecular traps using thermoresponsive polymers for single-molecule detection

Single-molecule surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Many conventional substrates have a broad distribution of SERS enhancements, which compromise reproducibility and result in slow response times for single-molecule detection. Here we report a smart plasmonic sensor that can reversibly trap a single molecule at hotspots for rapid single-molecule detection. The sensor was fabricated through electrostatic self-assembly of gold nanoparticles onto a gold/silica-coated silicon substrate, producing a high yield of uniformly distributed hotspots on the surface. The hotspots were isolated with a monolayer of a thermoresponsive polymer (poly(N-isopropylacrylamide)), which act as gates for molecular trapping at the hotspots. The sensor shows not only a good SERS reproducibility but also a capability to repetitively trap and release molecules for single-molecular sensing. The single-molecule sensitivity is experimentally verified using SERS spectral blinking and bianalyte methods.

Zheng, Yuanhui, Alexander H. Soeriyadi, Lorenzo Rosa, Soon Hock Ng, Udo Bach, J. Justin Gooding

Nature Communications

6

8797

2015

QUESTIONS?

info@harrickplasma.com
(USA): 800-640-6380
(Intl): +001-607-272-5070