Micropatterned Fluid Lipid Bilayer Arrays Created Using a Continuous Flow Microspotter

We have developed a new method for creating micropatterned lipid bilayer arrays (MLBAs) using a 3D microfluidic system. An array of fluid lipid membranes was patterned onto a glass substrate using a Continuous Flow Microspotter. Fluorescence microscopy experiments were used to verify the formation of a bilayer structure on the glass substrate. Fluorescence recovery after photobleaching experiments demonstrated the bilayers' fluidity was maintained while being individually corralled on the substrate. The reproducibility of bilayer formation within an array was demonstrated by the linear response of membrane fluorescence versus mol % rhodamine functionalized lipids incorporated into the vesicles prior to fusion to the surface. The highly customizable nature of the MLBAs was demonstrated utilizing three different fluorescently labeled lipids to generate a multiple component lipid array. Finally, the cholera toxin B/ganglioside GM1, antidinitrophenyl (DNP) antibody/DNP, and NeutrAvidin/biotin protein-ligand systems were used to model multiple protein-ligand binding on the MLBAs. The multicomponent patterned bilayers were functionalized with GM1, DNP, and biotin lipids, and binding curves was generated by recording surface fluorescence versus increasing concentration of membrane bound ligands.

Smith, K. A., B. K. Gale, J. C. Conboy

Anal. Chem.






(USA): 800-640-6380
(Intl): +001-607-272-5070