Microfluidic-Based Live-Cell Analysis of NK Cell Migration In Vitro

Effector functions and cellular properties of natural killer (NK) cells are regulated by cellular and extracellular factors shaped by the microenvironments. NK cells express specific chemokine and non-chemokine receptors to aid preferential migrations or localizations in tissues. Good understanding of how NK-cell migratory properties are regulated in physiological and pathological microenvironments will provide further insights into the development of NK cell-based therapeutic approaches. In contrast to the commonly used conventional in vitro migration assays such as Trans-well assays that measure movements of a population of the migratory cells, microfluidic-based devices support live-cell imaging of cell migrations under a well-defined chemical gradient(s) at microscale. Subsequent analyses at single-cell level provide quantitative measurements of cell-migration parameters such as speed and Chemotactic Index, and permit distinguishing chemotaxis, chemokinesis, and chemo-repulsion. Our recent work established the use of a Y-shaped microfluidic device to study NK cell migrations in vitro. In this chapter, we described the detailed method of acquiring and analyzing NK cell migration in the microfluidic devices.

Nandagopal, Saravanan, Francis Lin, Sam K. P. Kung

Methods in Molecular Biology





(USA): 800-640-6380
(Intl): +001-607-272-5070