Fast quantification of amino acids by microchip electrophoresis-mass spectrometry

A fast microchip electrophoresisnano-electrospray ionization-mass spectrometric method (MCE-nanoESI-MS) was developed for analysis of amino acids in biological samples. A glass/poly(dimethylsiloxane) hybrid microchip with a monolithic nanoESI emitter was used in the platform. The proposed MCE-nanoESI-MS analytical method showed high separation efficiency for amino acids. Baseline separation of an amino acid mixture containing Lys, Arg, Val, Tyr, and Glu was completed within 120 s with theoretical plate numbers of >7,500. The method was applied to study cellular release of excitatory amino acids (i.e., aspartic acid (Asp) and glutamic acid (Glu)) under chemical stimulations. Linear calibration curves were obtained for both Asp and Glu in a concentration range from 1.00 to 150.0 μM. Limits of detection were found to be 0.37 μM for Asp and 0.33 μM for Glu (S/N = 3). Assay repeatability (relative standard deviation, n = 6) was 4.2 and 4.5 %, for Asp and Glu at 5.0 μM, respectively. In the study of cellular release, PC-12 nerve cells were incubated with alcohol at various concentrations for 1 h. Both extra- and intracellular levels of Asp and Glu were measured by the proposed method. The results clearly indicated that ethanol promoted the release of both Asp and Glu from the cells.

Li, Xiangtang, Dan Xiao, Talia Sanders, Paul B. Tchounwou, Yi-Ming Liu

Anal Bioanal Chem





(USA): 800-640-6380
(Intl): +001-607-272-5070